
Algorithms and Programming I

Lecture#13

Spring 2015

Conditional Statements

• Conditional execution in Python using the IF or if/else statement

• Indentation is used to indicate groups of statements that will be
executed conditionally.

• A condition is an expression that can be true or false.

'if' statement; block structure

• Block structure is determined by indentation

if (condition):

action1

if (condition):

action1

elif (condition):

action2

if (condition):

action1

elif (condition):

action2

else:

action3

if (condition):

action1

elif (condition):

action2

elif (condition):

action3

else:

action3

if (condition):

action1

else:

action2

Repetition statements-Loops(1)

• Repetition in python may be done using the while statement.

• Indentation is used to indicate groups of statements.

• Indentation will indicate the statement or group of statements that
will be executed repeatedly.

• Programmers call repetition statements LOOPS!

Repetition statements-Loops(2)

• Loop is a statement or group of statements that execute
repeatedly until a terminating condition is satisfied

• Infinite loop: A loop in which the terminating condition is never
satisfied

While statements have the form :

while condition: # don’t forget the colon : after the condition

statement_1 # execute if the loop condition is true

….

statement _ n #Go back to loop condition after this statement

Statement _ after _loop # execute after the loop condition is false.

Counter controlled loops

• Counter controlled use a counter variable that controls the iteration.

• Usually counter modification is the last thing in the loop body .

• Counter variable may count up, down, by ones or two, …. According
to the counter variable modification and condition.

while Statement

• Repetition of a block of statements
• Loop until test becomes false, or 'break‘

• Explanation: “While n is greater than 0, continue
displaying the value of n and then reducing the value of
n by 1. When you get to 0, display the word End!”

while Statement (cont.)

• What are the outputs of the following programs?

8

– for name in range(max):
– statements

– Repeats for values 0 (inclusive) to max (exclusive)

>>> for i in range(5):

... print(i)

0

1

2

3

4

For Loop

9

– for name in range(min, max):
– statements

– for name in range(min, max, step):
– statements

– Can specify a minimum other than 0, and a step other than 1

>>> for i in range(2, 6):

... print(i)

2

3

4

5

>>> for i in range(15, 0, -5):

... print(i)

15

10

5

For Loop variations

Built-in functions 'range(..)'

• It is used to terate over a sequence of
numbers:

• Examples:
• range(10): generates a list of 10 values

starting from 0 and incrementing by value 1
(Note that 10 is not included)

• [0,1,2,3,4,5,6,7,8,9]

• range(0, 10, 2): generates values
between 1 and 10 with increment value (or
step value) 2

• [0,2,4,6,8]

Exercise

Exercise 1

Exercise 2

• Write a program which prints the odd numbers
between 1 and 150 (150 is not included)

Exercise 3

• Write a program which prints the sum of
numbers between 1 and 50 (50 is not
included)

Exercise 4

• Write a program which prints the prime
numbers between 2 and 100 (100 is not
included)

So far we have the following in Python:
1. Assignments.

2. Conditionals. (if statements)

3. Input / Output

4. Looping constructs (For, While)

• Is that enough to write a piece of code?

Functions

Functions:

(1) Allow us to break up into modules.

(2) Suppressed details.

(3) Create “new primitives” .

Functions

• a function is a named sequence of statements that performs a
computation. When you define a function, you specify the name and
the sequence of statements..

Python Functions

• There are two kinds of functions in Python.
1. Built-in functions that are provided as part of Python – raw_ input(),input(),

type(), float(), int() ...

2. User Defined Functions that we define ourselves and then use.

• We treat the we “built function names” as "new" reserved words
(i.e. we avoid them as variable names).

Function Definition

• In Python a function is some reusable code that takes arguments(s)
as input, does some computation and then returns a result or
results.

• We define a function using the def (case sensitive!) reserved word.

• We call/invoke the function by using the function name,
parenthesis and arguments in an expression .

• We don’t have to pass argument when we call the function , but
still we have to have the parenthesis ().

Type conversion functions

• Python provides built-in functions that convert values from one type to
another. The int function takes any value and converts it to an integer, if it
can, or complains otherwise:

>>> int('32')

32

>>> int('Hello')

ValueError: invalid literal for int(): Hello

• int can convert floating-point values to integers, but it doesn’t round off; it
chops off the fraction part:

’32’
int()

function 32

Type conversion functions…
• float converts Integers and strings to floating-point numbers:

>>> float(32)

32.0

>>> float('3.14159')

3.14159

• Finally, str converts its argument to a string:
>>> str(32)

'32'

>>> str(3.14159)

'3.14159'

32
float()

function 32.0

Math functions
• Python has a math module that provides most of the familiar

mathematical functions. A module is a file that contains a collection of
related functions. But before we can use the module, we have to import
it:

>>> import math This statement creates a module object named
math.

• To access one of the functions, you have to specify the name of the
module and the name of the function, separated by a dot (also known as
a period). This format is called dot notation.

Math functions
• Example 1:

>>> ratio = signal_ power / noise _ power

>>> decibels = 10 * math.log10(ratio)

• Example 2:
>>> radians = 0.7

>>> height = math.sin(radians)

Python Build _in_ functions (python 2.75)

Python Build _in_functions (Python 3.4)

Building our Own Functions
• So far, we have only been using the functions that come with Python, but

it is also possible to add new functions.

The syntax for a function definition is:

def NAME (list of Parameters):

statments

• We create a new function using the def keyword followed by optional
parameters in parenthesis.

• We indent the body of the function. (an indentation of two spaces will
be used here)

• The list of parameters specifies what information ,if any, you have to
provide in order to use the new function.

• This defines the function but does not execute the body of the function.

• The execution of a function introduces a new symbol table used for the
local variables of the function.

Definitions and Uses

• Example (no parameters)

def newLine():
print

• This is the store and reuse pattern.

• Once we have defined a function, we can call (or invoke) it as many
times as we like.

• The syntax for calling the new function is the same as the syntax for
built-in functions:

newline()

Parameters and Arguments

Argument:

A value passed to a function (or method) when calling the

function.

Parameter:
A named entity in a function (or method) definition that specifies an
argument (or in some cases, arguments) that the function can accept.

https://docs.python.org/3/glossary.html#term-function
https://docs.python.org/3/glossary.html#term-method

Arguments

• An argument is a value we pass into the function as its input when
we call the function

• We use arguments so we can direct the function to do different
kinds of work when we call it at different times

• We put the arguments in parenthesis after the name of the
function

big = max(1,2,1,0)

Argument

Parameters

• A parameter is a variable
which we use in the
function definition that is
a “handle” that allows the
code in the function to
access the arguments for
a particular function
invocation.

>>> def greet(lang):...

if lang == 'es':...

print 'Hola'...

elif lang == 'fr':...

print 'Bonjour'...

else:...

print 'Hello'...

>>> greet('en')

Hello

>>> greet('es')

Hola

>>> greet('fr')

Bonjour

>>>

Return Values

• Often a function will take its arguments, do some computation and
return a value to be used as the value of the function call in the
calling expression. The return keyword is used for this.

Return Value

• A “fruitful” function is
one that produces a
result (or return value)

• The return statement
ends the function
execution and “sends
back” the result of the
function

>>> def greet(lang):

if lang == 'es' :

return 'Hola'

elif lang == 'fr' :

return 'Bonjour‘

else:

return 'Hello‘

>>> print greet('en'),'Glenn'Hello Glenn

>>> print greet('es'),'Sally'Hola Sally

>>> print greet('fr'),'Michael'Bonjour

Michael

>>>

Arguments, Parameters, and Results

>>> big = max('Hello world')

>>> print big

w

def max(inp):

statement

for x in y:

statement

return ‘w’

“Hello world” ‘w’

Argument

Parameter

Result

Multiple Parameters / Arguments

• We can define more than
one parameter in the
function definition

• We simply add more
arguments when we call
the function

def addtwo(a, b):

added = a + b

return added

x = addtwo(3, 5)

print x

Void (non-fruitful) Functions

• When a function does not return a value, we call it a "void"
function.

Sequences

An ordered sets which support efficient element access using
integer indices (via the __getitem__())special method and defines a
len() method that returns the length of the sequence.
Some built-in sequence types are:

(1) lists,
(2) Strings

(3) and tuple.

https://docs.python.org/2/reference/datamodel.html#object.__getitem__
https://docs.python.org/2/library/functions.html#len
https://docs.python.org/2/library/functions.html#list
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#tuple

Lists
• compound data types, used to group together other values.
• can be written as a list of comma-separated values (items) between square

brackets.
• Lists might contain items of different types, but usually the items all have

the same type.
Example:

squares = [1, 4, 9, 16, 25]
Like strings (and all other built-in sequence type), lists can be indexed and
sliced:
>>> squares[0] # indexing returns the item 1
If an index has a negative value, it counts backward from the end of the list:
>>> squares[-1]
25
>>> squares[-3:] # slicing returns a new list
[9, 16, 25]

https://docs.python.org/2/glossary.html#term-sequence

Nested list

• A list within another list is said to be nested.
Example:
m=[‘hello’,2.3,5,[10,20]]

Lists that contain consecutive integers are common, so Python provides a simple
way to create them:

>>> range(1,5)
[1, 2, 3, 4]

The range function takes two arguments and returns a list that contains all the
integers from the first to the second, including the first but not including the
second!
Two other forms of range
Rang(10) : start from zero
Range(1,10,3): specifies the space between successive values (step size)

Accessing elements of a list
The syntax for accessing the elements of a list is the same as the syntax
for accessing the characters of a string the bracket operator ([]).

Example:

>>>Numbers=[2,2,3,4]

>>>Number[0]

2

List length

• The function len returns the length of a list.

It is a good idea to use this value as the upper bound of a loop

instead of a constant. That way, if the size of the list changes,

you won't have to go through the program changing all the

loops; they will work correctly for any size list:

Example:

names= [“sam", “nat", “jack", “john"]

i = 0

while i < len(names):

print names[i]

i = i + 1

List membership

• in is a Boolean operator that tests membership in a sequence.

Example:

>>>names= [‘sam’, ‘nat’, ‘jack’, ‘john’]

>>>’sam’ in names

True

>>>’carol’ in names

false

Lists and for loops

The generalized syntax of a for loop is:

for VARIABLE in LIST:

BODY

>>> numbers=[1,2,2,4,5,6]

>>> for numbers in numbers:

print numbers

List operations

The + operator concatenates lists:

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> print c

[1, 2, 3, 4, 5, 6]

The * operator repeats a list a given number of times

>>> [0] * 4

[0,0,0,0]

>>> [1,2,3]* 3

[1,2,3,1,2,3,1,2,3]

List slices

• A segment of a list is called a slice.

Example:

>>> list=[‘a’, ’b’ ,’c ,’d ’ , ’e ’, ’ f,’]

>>> list [1:3]

[’b’ , ‘c’]

>>> list[: 4]

[‘a’, ’b’ ,’c ,’d ’]

List methods

• Python provide methods that operate on lists:
1. append : which add a new element to the end of a list.

example:
>>>t=[‘a’,’s’,’d’]
>>>t.append(‘x’)
>>> print t
t = [‘a’ , ‘s’, ‘d’, ‘x’]

2. Extend: takes a list as an argument and appends all of the elements.

>>> t1 = ['a', 'b', 'c']

>>> t2 = ['d', 'e']

>>> t1.extend(t2)

>>> print t1

['a', 'b', 'c', 'd', 'e']

(3) Sort: arrange the elemnts of the list from low to high:

>>> t = ['d', 'c', 'e', 'b', 'a']

>>> t.sort()

>>> print t

['a', 'b', 'c', 'd', 'e']

List are mutable
• lists are mutable, which means we can change their elements.

immutable

An object with a fixed value. Immutable objects include numbers, strings and tuples. Such

an object cannot be altered.

A new object has to be created if a different value has to be stored. They play an important

role in places where a

constant hash value is needed,

for example as a key in a dictionary.

mutable

Mutable objects can change their value but keep their id()

iterable

An object capable of returning its members one at a time.
Examples of iterable include all sequence types (such as list, str, and tuple) and some non-
sequence types like dict and file.

https://docs.python.org/2/library/functions.html#id
https://docs.python.org/2/library/functions.html#list
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#file

